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Role of vascular endothelial growth factor in the regulation
of angiogenesis
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Role of vascular endothelial growth factor in the regulation in the adult [4]. Angiogenesis is also implicated in the
of angiogenesis. Compelling evidence indicates that vascular pathogenesis of a variety of disorders: proliferative reti-
endothelial growth factor (VEGF) is a fundamental regulator nopathies, age-related macular degeneration (AMD), tu-
of normal and abnormal angiogenesis. The loss of a single

mors, rheumatoid arthritis (RA), and psoriasis [4, 5].VEGF allele results in defective vascularization and early em-
Several potential regulators of angiogenesis have beenbryonic lethality. VEGF plays also a critical role in kidney

development, and its inactivation during early postnatal life identified, including acidic fibroblast growth factor
results in the suppression of glomerular development and kid- (aFGF), basic fibroblast growth factor (bFGF), trans-
ney failure. Recent evidence indicates that VEGF is also essen- forming growth factor-a (TGF-a), transforming growth
tial for angiogenesis in the female reproductive tract and for

factor-b (TGF-b), hepatocyte growth factor/scatter fac-morphogenesis of the epiphyseal growth plate and endochon-
tor (HGF/SF), tumor necrosis factor-a (TNF-a), angio-dral bone formation. Substantial experimental evidence also
genin, and interleukin (IL)-8, [3, 6], and more recently,implicates VEGF in pathological angiogenesis. Anti-VEGF

monoclonal antibodies or other VEGF inhibitors block the the angiopoietins (Angs), the ligands of the Tie-2 recep-
growth of several human tumor cell lines in nude mice. Further- tor [7, 8]. The negative regulators include thrombospon-
more, the concentrations of VEGF are elevated in the aqueous din [9, 10], the 16 kDa N-terminal fragments of prolactinand vitreous humors of patients with proliferative retinopathies

[11] and growth hormone [12], the plasminogen fragmentsuch as the diabetic retinopathy. In addition, VEGF-induced
angiostatin [13], the collagen XVIII fragment endostatinangiogenesis results in a therapeutic benefit in several animal

models of myocardial or limb ischemia. Currently, both thera- [14], and vasostatin, a calreticulin fragment [15].
peutic angiogenesis using recombinant VEGF or VEGF gene In 1983, Senger et al reported the partial purification
transfer and inhibition of VEGF-mediated pathological angio- of a protein able to induce vascular leakage in the guineagenesis are being pursued clinically.

pig skin [16]. This protein was named tumor vascular
permeability factor (VPF) and was thought to be a spe-
cific mediator of the high permeability of tumor blood

The cardiovascular system is the first organ system to vessels, rather than a growth factor. In 1989, Ferrara
develop and reach a functional state in an embryo [1]. and Henzel and Ploüet et al independently reported the
The initial steps consist of “vasculogenesis,” which is the purification to homogeneity and NH2-teminal amino acid
differentiation of endothelial cell precursors, the angi- sequencing of an endothelial cell-specific mitogen, which
oblasts, from the hemangioblasts [2]. The juvenile vascu- they named, respectively, vascular endothelial growth
lar system evolves from the primary capillary plexus by factor (VEGF) [17] and vasculotropin [18]. Subsequent
subsequent pruning and reorganization of endothelial cloning and expression of VEGF [19] and VPF [20] re-
cells in a process called “angiogenesis” [3]. The develop- vealed that the activities of VEGF and VPF are mediated
ment of a vascular supply is essential not only for organ by the same molecule. The finding that VEGF is potent,
development and differentiation during embryogenesis diffusible, and specific for vascular endothelial cells led
but also for wound healing and reproductive functions to the hypothesis that this molecule might play a unique

role in the regulation of physiological and pathological
growth of blood vessels [17, 19].Key words: VEGF, endothelium, glomerular development, apoptosis,

Over the last few years, several molecules structurallytyrosine kinases, tumor growth.
related to VEGF have been identified, including placenta
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tega, Hutchings, and Ploüet [31], or Neufeld et al [32]. also as vascular permeability factor (VPF) based on its
ability to induce vascular leakage in the guinea pig skinThe focus of this article is on VEGF. There is compelling

evidence that this factor plays an essential role in the [44]. Dvorak proposed that an increase in microvascular
permeability to proteins is a crucial step in angiogenesisdevelopment and differentiation of the cardiovascular

system, and the loss of a single VEGF allele results in associated with tumors and wounds [45]. Bates and Curry
have shown that VEGF also induces an increase in hy-early lethality in mouse embryos [33, 34]. Furthermore,

VEGF is a key mediator of pathological angiogenesis draulic conductivity of isolated microvessels [46] and that
such an effect is mediated by increased calcium influxassociated with tumors or ischemic retinal diseases [28].

VEGF-induced angiogenesis has been shown to result [47]. Other studies have also suggested that VEGF also
induces fenestrations in endothelial cells, both in vivoin a therapeutic effect in animal models of coronary or

limb ischemia [28]. Presently, both therapeutic angiogen- [48, 49] and in vitro [50].
Melder et al have shown that VEGF promotes expres-esis using recombinant VEGF or VEGF gene transfer

and inhibition of VEGF-mediated pathological angio- sion of vascular cell adhesion molecule-1 (VCAM-1) and
intercellular adhesion molecule-1 (ICAM-1) in endothe-genesis are being actively pursued clinically.
lial cells [51]. This induction results in the adhesion of
activated natural killer (NK) cells to endothelial cells,

BIOLOGICAL EFFECTS OF VASCULAR
mediated by specific interaction of endothelial VCAM-1

ENDOTHELIAL GROWTH FACTOR
and ICAM-1 with CD18 and VLA-4 on the surface of

Vascular endothelial growth factor is a mitogen for NK cells. Transgenic overexpression of VEGF in the
vascular endothelial cells derived from arteries, veins, skin of mice results not only in increased vascular density
and lymphatics, but it is devoid of consistent and appre- but also in enhanced leukocyte adhesion and rolling [52].
ciable mitogenic activity for other cell types [28]. VEGF Vascular endothelial growth factor has been reported
also elicits a pronounced angiogenic response in a variety to have regulatory effects on blood cells. Clauss et al
of in vivo models, including the chick chorioallantoic reported that VEGF promotes monocyte chemotaxis
membrane [18, 19]. Also, VEGF induces endothelial [53]. Broxmeyer et al have subsequently shown that
sprouting from rat aortic rings embedded in a collagen VEGF induces colony formation by mature subsets of
gel [35]. VEGF and bFGF demonstrate a potent syner- granulocyte-macrophage progenitor cells [54]. Further-
gism in their ability to promote angiogenesis in an in vitro more, Gabrilovich et al have reported that VEGF may
model system, where bovine microvascular endothelial have an inhibitory effect on the maturation of host pro-
cells invade a tridimensional collagen gel [36]. More re- fessional antigen-presenting cells such as dendritic cells
cently, the combination of VEGF and Ang-1 or Ang-2 [55]. VEGF was found to inhibit immature dendritic cells
has been shown to have an effect greater than additive in vitro, without having a significant effect on the function
in the mouse cornea model [37]. Although neither Ang-1 of mature cells, suggesting that VEGF may also facilitate
nor Ang-2 had any angiogenic effect, each of them was tumor growth by allowing the tumor to avoid the induc-
able to significantly potentiate the angiogenic response tion of an immune response [55]. These findings have
to VEGF in this model [37]. been extended to the in vivo situation, where VEGF

Vascular endothelial growth factor functions as a sur- infusion resulted in inhibition of dendritic cell develop-
vival factor for cultured endothelial cells in serum- ment, associated with an increase in the production of
depleted conditions [38, 39]. Consistent with a prosurvival B cells and immature Gr-1(1) myeloid cells [56]. Infu-
activity, VEGF induces expression of the antiapoptotic sion of VEGF was also found to be associated with inhi-
proteins Bcl-2 and A1 in human endothelial cells [38]. bition of the activity of the transcription factor nuclear
Alon et al have provided evidence that VEGF is a sur- factor-kB in bone marrow progenitor cells [56].
vival factor for immature retinal vessels [40]. The same Eichman et al have provided evidence that VEGF is
group suggested that pericyte coverage is the critical a fundamental regulator of differentiation of the heman-
event that determines whether endothelial cells are de- gioblast, the common precursor for endothelial and he-
pendent on VEGF for survival [41]. mopoietic cells [57]. A population of mesodermal cells

Vascular endothelial growth factor induces expression from chicken embryos at the gastrulation stage was iso-
of the serine proteases urokinase-type and tissue-type lated based on the expression of the VEGF receptor Flk-
plasminogen activators (PAs) and also PA inhibitor-1 1/KDR (discussed later in this article). In the presence of
(PAI-1) in cultured bovine microvascular endothelial VEGF, such cells differentiated in endothelial lineage
cells [42]. Moreover, VEGF increases expression of the [57]. Hemopoietic differentiation occurred in the ab-
metalloproteinase interstitial collagenase in human um- sence of VEGF, although it was significantly reduced by
bilical vein endothelial cells (HUVECs) but not in der- soluble Flk-1/KDR, suggesting that this process could
mal fibroblasts [43]. be mediated by a second, yet unidentified, Flk-1/KDR

ligand. These findings suggest that VEGF is the instruc-As mentioned earlier in this article, VEGF is known
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tive signal that results in the differentiation of hemangi- following cleavage at the COOH terminus. This action
generates a bioactive proteolytic fragment having molec-oblasts into the endothelial lineage.

Vascular endothelial growth factor induces vasodila- ular weight of approximately 34,000 Da [65]. Plasmino-
gen activation and generation of plasmin have beention in vitro in a dose-dependent fashion [58, 59] and

produces transient tachicardia, hypotension, and a de- shown to play an important role in the angiogenesis
cascade. Thus, proteolysis of VEGF is likely to occurcrease in cardiac output when injected intravenously in

conscious, instrumented rats [59]. Such effects appear also in vivo. Keyt et al have shown that the bioactive
product of plasmin action is comprised of the first 110to be caused by a decrease in venous return, mediated

primarily by endothelial cell-derived nitric oxide (NO) NH2-terminal amino acids of VEGF [67]. These findings
suggest that the VEGF proteins may become available[59]. Accordingly, VEGF has no direct effect on contrac-

tility or rate in isolated rat heart in vitro [59]. These to endothelial cells by at least two different mechanisms:
as freely soluble proteins (VEGF121, VEGF165) or follow-hemodynamic effects, however, are not unique to VEGF.

Other angiogenic factors such as aFGF and bFGF also ing protease activation and cleavage of the longer iso-
forms. However, the loss of heparin binding, whether it ishave the ability to induce NO-mediated vasodilation and

hypotension [60, 61]. caused by alternative splicing of RNA or plasmin cleavage,
results in substantially decreased mitogenic activity for
vascular endothelial cells. Compared with VEGF165,ORGANIZATION OF THE VEGF GENE AND
VEGF121 or VEGF110 demonstrate a 50- to 100-fold re-

CHARACTERISTICS OF THE VEGF ISOFORMS
duced potency when tested in endothelial mitogenic

The human VEGF gene is organized in eight exons, assay [67]. It is possible that the stability of VEGF-
separated by seven introns. The coding region spans heparan sulfate-receptor complexes contributes to effec-
approximately 14 kb [62, 63]. The human VEGF gene tive signal transduction and stimulation of endothelial
is localized to chromosome 6p21.3 [64]. It is now well cell proliferation [67]. Furthermore, more recent studies
established that alternative exon splicing of a single have demonstrated that VEGF121 fails to bind neuropi-
VEGF gene results in the generation of four different lin-1, an isoform-specific VEGF receptor that presents
molecular species, having, respectively, 121, 165, 189, VEGF165 to its signaling receptors in a manner that en-
and 206 amino acids following signal sequence cleavage hances the effectiveness of the signal transduction cascade
(VEGF121, VEGF165, VEGF189, VEGF206). VEGF165 lacks (see section on signal transduction) [68]. Poltorak et al
the residues encoded by exon 6, whereas VEGF121 lacks have provided evidence for the existence of an additional
the residues encoded by exons 6 and 7. Compared with alternatively spliced isoform containing exons 1 through
VEGF165, VEGF121 lacks 44 amino acids; VEGF189 has 6 and 8 of the VEGF gene, VEGF145 [69]. VEGF145 is
an insertion of 24 amino acids highly enriched in basic able to promote endothelial cell growth, albeit with a
residues, and VEGF206 has an additional insertion of 17 significantly lower potency than VEGF165. Ploüet et al
amino acids [62]. have recently proposed a role for urokinase in the genera-

Vascular endothelial growth factor165 is the predomi- tion of bioactive VEGF189 [70]. Recombinant VEGF189
nant molecular species produced by a variety of normal from insect cells infected with a recombinant baculovirus
and transformed cells. Transcripts encoding VEGF121 was purified as a nonmitogenic 50 kDa precursor that
and VEGF189 are detected in the majority of cells and binds to the receptor Flt-1 but not to Flk-1/KDR. How-
tissues expressing the VEGF gene [62]. In contrast, ever, it could be matured by urokinase as a 38 kDa frag-
VEGF206 is a very rare form [62]. ment able to bind Flk-1/KDR and promote endothelial

Native VEGF is a basic, heparin-binding, homodi- cell proliferation [70].
meric glycoprotein of 45,000 Da [17]. These properties Muller et al have solved the crystal structure of VEGF
correspond to those of VEGF165, the major isoform [65]. at a resolution of 2.5 A [71]. Overall, the VEGF monomer
VEGF121 is a weakly acidic polypeptide that fails to bind resembles that of PDGF, but its N-terminal segment is
to heparin [65]. VEGF189 and VEGF206 are more basic helical rather than extended. The dimerization mode of
and bind to heparin with greater affinity than VEGF165 VEGF is similar to that of PDGF and unlike that of
[65]. VEGF121 is a freely diffusible protein; VEGF165 is TGF-b [71].
also secreted, although a significant fraction remains
bound to the cell surface and the extracellular matrix

REGULATION OF VEGF GENE EXPRESSION(ECM). In contrast, VEGF189 and VEGF206 are almost
Oxygen tensioncompletely sequestered in the ECM [66]. However, these

isoforms may be released in a soluble form by heparin Oxygen tension has been shown to be a key regulator
or heparinase, suggesting that their binding site is repre- of VEGF gene expression, both in vitro and in vivo. VEGF
sented by proteoglycans containing heparin-like moie- mRNA expression is induced by exposure to low pO2 in

a variety of normal and transformed cultured cell typesties. The long forms may be released also by plasmin
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[72, 73]. Also, ischemia caused by occlusion of the left protein in the medium [88]. Both IL-1a and prostaglan-
din E2 induce expression of VEGF in cultured synovialanterior descending coronary artery results in a dramatic

increase in VEGF RNA levels in the pig and rat myocar- fibroblasts, suggesting the participation of such inductive
mechanisms in inflammatory angiogenesis [89]. IL-6 hasdium, suggesting that VEGF may be one of the mediators

of the spontaneous revascularization that follows myocar- been also shown to induce VEGF expression significantly
in several cell types [90]. IGF-1 is able to induce expres-dial ischemia [74, 75].

Similarities exist between the mechanisms leading to sion of VEGF mRNA and protein release in cultured
colorectal carcinoma cells [91]. Thyroid-stimulating hor-hypoxic regulation of VEGF and erythropoietin (Epo)

[76]. Hypoxia inducibility is conferred on both genes by mone has been shown to induce VEGF expression in
several thyroid carcinoma cell lines [92]. Also, angioten-homologous sequences. A 28-base sequence has been

identified in the 59 promoter of the rat and human VEGF sin II induces VEGF release from cultured human mes-
angial cells [93]. Shifren et al have examined the VEGFgene, which mediates hypoxia-induced transcription [77,

78]. Such a sequence reveals a high degree of homology expression in the midgestation (16 to 20 weeks) human
fetal adrenal cortex [94]. Strong cytoplasmic immuno-and similar protein binding characteristics as the hypoxia-

inducible factor-1 (HIF-1) binding site within the Epo staining for VEGF was detected in clusters of fetal zone
cells. In contrast, cells in the outer, less well-vascularized,gene [79]. HIF-1 is a basic, heterodimeric, helix-loop-helix

protein consisting of two subunits, HIF-1a and aryl hydro- definitive zone of the cortex stained only weakly for
VEGF. Adrenocorticotropic hormone (ACTH) was ablecarbon receptor nuclear translocator (ARNT), known also

as HIF-1b [80]. Evidence for a critical role of HIF-1a has to induce VEGF expression in cultured human fetal ad-
renal cortical cells. These findings suggest that VEGFbeen also provided by gene knockout studies. Inactivation

of HIF-1a in mice resulted in developmental arrest and may be a local regulator of adrenal cortical angiogenesis
and a mediator of the tropic action of ACTH.lethality by E11 [81, 82]. Embryos manifested neural tube

defects, cardiovascular malformations, and marked cell
Cell differentiation and transformationdeath within the cephalic mesenchyme. These results sug-

gest that HIF-1a is a key regulator of cellular and develop- Cell differentiation has been shown to play an impor-
tant role in the regulation of VEGF gene expressionmental O2 homeostasis [81]. Also, the consequence of

HIF-1a inactivation in embryonic stem (ES) cell on in [95]. The VEGF mRNA is up-regulated during the con-
version of 3T3 preadipocytes into adipocytes or duringvitro proliferation and in vivo tumorigenesis has been

examined by two groups [82, 83]. Surprisingly, however, the myogenic differentiation of C2C12 cells.
Specific transforming events also result in inductionvery different conclusions were reached. According to

Ryan, Lo, and Johnson, HIF-1a inactivation leads to of VEGF gene expression. Oncogenic mutations or am-
plification of ras lead to VEGF up-regulation [96–98].a dramatically decreased tumorigenesis and increased

apoptosis, coincident with reduced hypoxia-induced ex- Moreover, the von Hippel-Lindau (VHL) tumor sup-
pressor gene has been recently implicated in the regula-pression of VEGF [82]. In contrast, Carmeliet et al re-

ported that the growth of ES cell-derived tumors is para- tion of VEGF gene expression [99–101]. The VHL tumor
suppressor gene is inactivated in patients with VHL dis-doxically enhanced following loss of HIF-1a, possibly

because of protection from hypoxia-induced apoptosis ease and in most sporadic clear cell renal carcinomas.
Although the function of the VHL protein remains to[83]. Whether such discrepancies reflect differences in

the genotype or clone of ES cells or other experimental be fully elucidated, it is known that such protein interacts
with the elongin BC subunits in vivo and regulates RNAvariable remains to be established.

However, transcriptional activation is not the only polymerase II elongation activity in vitro by inhibiting
formation of the elongin ABC complex. Renal cell carci-mechanism leading to VEGF up-regulation in response

to hypoxia. Increased mRNA stability has been identi- noma cells either lacking endogenous wild-type VHL
gene or expressing an inactive mutant demonstrated al-fied as a significant post-transcriptional component

[84, 85]. tered regulation of VEGF gene expression, which was
corrected by the introduction of the wild-type VHL gene.

Growth factors and hormones Most of the endothelial cells’ mitogenic activity released
by tumor cells expressing mutant VHL gene was neutral-Several cytokines or growth factors may up-regulate

VEGF mRNA expression. EGF, TGF-b, or keratinocyte ized by anti-VEGF antibodies [99]. These findings sug-
gest that VEGF is a key mediator of the abnormal vascu-growth factor 1 (KGF1) result in a marked induction

of VEGF mRNA expression [86]. EGF also stimulates lar proliferations and solid tumors characteristic of VHL
syndrome. Iliopoulos et al have shown that a functionVEGF release by cultured glioblastoma cells [87]. In

addition, treatment of quiescent cultures of epithelial of the VHL protein is to provide a negative regulation of
a series of hypoxia-inducible genes, including the VEGFand fibroblastic cell lines with TGF-b resulted in the

induction of VEGF mRNA and the release of VEGF platelet-derived growth factor B chain and the glucose
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transporter GLUT1 genes [100]. In the presence of a receptor binds VEGF with high affinity (Kd 10 to 20 pm)
and is able to inhibit VEGF-induced mitogenesis [113].mutant VHL, mRNAs for such genes were produced

both under normoxic and hypoxic conditions. Reintro- An additional member of the family of RTKs with
seven Ig-like domains in the ECD is Flt-4 (VEGFR-3)duction of wild-type VHL resulted in the inhibition of

mRNA production under normoxic conditions and re- [114–116], which, however, is not a receptor for VEGF
but rather binds a newly identified ligand called VEGF-Cstored the characteristic hypoxia-inducibility of those

genes [100]. Gnarra et al suggested that VHL regulates or VEGF-related peptide (VRP) [24, 25]. VEGF-C has
been shown to be involved in the regulation of lymphaticVEGF expression at a post-transcriptional level and that

VHL inactivation in target cells causes a loss of VEGF angiogenesis [117].
Recent studies have mapped the binding site forsuppression [101]. However, Mukhopadhyay et al have

provided evidence for an additional mechanism by which VEGF to the second Ig-like domain of Flt-1 and KDR
[118, 119]. The deletion of the second domain of Flt-1the VHL gene product suppresses VEGF: VHL interacts

with Sp1 to repress VEGF promoter activity, as assessed abolished the binding of VEGF. The introduction of the
second domain of KDR into an Flt-1 mutant lackingby VEGF promoter-luciferase reporter studies [102].

Deletion analysis defined a 144 bp region of the VEGF the homologous domain restored VEGF binding [118].
However, the ligand specificity was characteristic of thepromoter necessary for VHL repression. This VHL-

responsive element is GC-rich and specifically binds the KDR receptor because the mutant failed to bind PlGF.
Similar conclusions were reached in deletion experi-transcription factor Sp1 in crude nuclear extracts.
ments in KDR [120]. These studies indicate that of the
seven IgG-like domains in the ECD, only domains 2 and

VASCULAR ENDOTHELIAL GROWTH
3 are needed for tight binding of VEGF to the KDR

FACTOR RECEPTORS
receptor [120]. Wiesmann et al have solved the crystal

Initial studies provide evidence for the existence of structure of a VEGF-Flt-1 domain 2 complex [121].
two classes of high-affinity VEGF binding sites on the These studies have shown domain 2 in a predominantly
surface of endothelial cells, with Kd values of 10 and 100 hydrophobic interaction with the poles of the VEGF
pm, respectively, and molecular masses in the range of dimer. However, alanine-scanning mutagenesis analysis
180 to 220 kDa [103, 104]. Ligand autoradiography stud- of the first three domains of Flt-1 has shown that several
ies on fetal and adult rat tissue sections demonstrated charged residues, especially Asp187, are important in
that high-affinity VEGF binding sites are localized to maintaining the structural integrity of domain 2, al-
the vascular endothelium of large or small vessels in situ though not directly involved in the ligand–receptor inter-
[105, 106]. VEGF binding was apparent not only on face [122].
proliferating but also on quiescent endothelial cells [105, Signal transduction. Vascular endothelial growth fac-
106]. tor has been shown to induce the phosphorylation of at

least 11 proteins in bovine aortic endothelial cells [123].
Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) Phospholipase Cg(PLC-g) and two proteins that associ-
tyrosine kinases ate with PLC-g were phosphorylated in response to

Binding characteristics and structural properties. Two VEGF. Furthermore, immunoblot analysis for mediators
VEGF receptor tyrosine kinases (RTKs) have been iden- of signal transduction that contain SH2 domains demon-
tified. The Flt-1 (fms-like-tyrosine kinase) [107] and strated that VEGF induces phosphorylation of phospha-
KDR (kinase domain region) [108] receptors bind tidylinositol 3-kinase, ras GTPase-activating protein
VEGF with high affinity. The murine homologue of (GAP), and several others. These studies, however, did
KDR, Flk-1 (fetal liver kinase-1), shares an 85% se- not identify which VEGF receptor(s) is involved in these
quence identity with human KDR [109]. Both Flt-1 and events. Recently, it has been suggested that NO medi-
KDR/Flk-1 have seven immunoglobulin (Ig)-like do- ates, at least in part, the mitogenic effect of VEGF on
mains in the extracellular domain (ECD), a single trans- cultured microvascular endothelium isolated from coro-
membrane region and a consensus tyrosine kinase (TK) nary venules [124].
sequence, which is interrupted by a kinase-insert domain Several studies have indicated that Flt-1 and KDR
[109–111]. Flt-1 has the highest affinity for rhVEGF165, have different signal transduction properties [125, 126].
with a Kd of approximately 10 to 20 pm [107]. KDR has Porcine aortic endothelial cells lacking endogenous
a lower affinity for VEGF, with a Kd of approximately VEGF receptors display chemotaxis and mitogenesis in
75 to 125 pm [108]. response to VEGF when transfected with a plasmid coding

A cDNA coding an alternatively spliced soluble form for KDR [125]. In contrast, transfected cells expressing
of Flt-1 (sFlt-1), lacking the seventh Ig-like domain, Flt-1 lack such responses [125, 126]. Flk-1/KDR undergoes
transmembrane sequence and the cytoplasmic domain strong ligand-dependent tyrosine phosphorylation in in-

tact cells, whereas Flt-1 reveals a weak or undetectablehas been identified in HUVECs [112, 113]. This sFlt-1
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response [125, 126]. Also, VEGF stimulation results in [39]. Most recently, Ogawa et al have isolated a polypep-
tide with an approximate 25% amino acid identity toweak tyrosine phosphorylation that does not generate

any mitogenic signal in transfected NIH 3T3 cells ex- mammalian VEGF, encoded by a gene previously identi-
fied [134, 135] in the genome of Orf virus, a parapoxviruspressing Flt-1 [126]. These findings agree with other stud-

ies showing that PlGF, which binds with high affinity to that affects sheep and goats and occasionally humans.
This polypeptide, named VEGF-E, is a potent mitogenFlt-1 but not to Flk-1/KDR, lacks direct mitogenic or

permeability-enhancing properties or the ability to stim- and permeability-enhancing factor. Remarkably, VEGF-E
binds KDR/Flk-1 and induces its autophosphorylationulate tyrosine phosphorylation effectively in endothelial

cells [127]. Interestingly, however, high concentrations to almost the same extent as VEGF165 but fails to bind
Flt-1 [135]. Nevertheless, at least one biological response,of PlGF expected to saturate the Flt-1 sites are able to

potentiate the activity of VEGF, both in vivo and in the migration of monocytes in response to VEGF (or
PlGF), has been clearly shown to be mediated by Flt-1vitro [127]. These findings led to the suggestion that Flt-1

may be not primarily a signaling receptor but rather a [136, 137]. VEGF-induced macrophage migration was
suppressed in Flt-1(TK2/2) mice [131]. Moreover, the“decoy” receptor, able to regulate in a negative fashion

the activity of VEGF on the vascular endothelium by ability of VEGF to inhibit maturation of dendritic cells
has been associated with activation of Flt-1 [138]. Ac-sequestering and rendering this ligand less available to

Flk-1/KDR [127]. In apparent conflict with this hypothe- cording to these studies, VEGF activation of Flt-1 is able
to block the activation of nuclear factor-kB [138]. It issis, subsequent studies indicated that Flt-1 is indeed able

to interact with various signal transducing proteins, in- tempting to speculate that Flt-1 is able to mediate a
specific regulatory signal in cell types other than endo-cluding the p85 subunit of the PI3 kinase and the mito-

gen-activated protein kinase, and generate, under some thelial cells, such as macrophages.
Soker et al have demonstrated the existence of ancircumstances, a mitogenic signal, at least in transfected

cell lines [125, 128, 129]. Also, constitutively active artifi- additional VEGF receptor [68] that binds VEGF165 but
not VEGF121. This isoform-specific VEGF binding sitecial chimeras of the human leukemia oncoprotein BCR-

ABL with the intracellular domain (ICD) of Flt-1, with is identical to human neuropilin-1, a receptor for the
collapsin/semaphorin family that mediates neuroneal cellmutations within the Flt-1 sequence, transform Rat1 fi-

broblasts, abrogate IL-3 dependence in Ba/F3 cells and guidance [139]. When coexpressed in cells with KDR,
neuropilin-1 enhanced the binding of VEGF165 to KDRinduce neurite-like structures in neuroneal PC12 cells,

suggesting that the Flt-1 kinase has the potential to be and VEGF165-mediated chemotaxis. Conversely, inhibi-
tion of VEGF165 binding to neuropilin-1 inhibits its bind-activated and mediate a transforming signal, at least in

such an artificial system [130]. However, very recent stud- ing to KDR and its mitogenic activity for endothelial
cells. These findings suggest that neuropilin-1 may pres-ies have provided evidence in support of the earlier hy-

pothesis. Hiratsuka et al have demonstrated that a tar- ent VEGF165 to the Flk-1/KDR receptor in a manner
that enhances the effectiveness of Flk-1/KDR-mediatedgeted mutation resulting in a Flt-1 receptor lacking the

TK domain but able to bind VEGF does not result in signal transduction. So far, there is no evidence that
neuropilin-1 signals follow VEGF binding. As previouslylethality or any defect in embryonic development and

angiogenesis in mice [131], whereas complete inactiva- mentioned, these findings may help explain the greater
mitogenic potency of VEGF165 compared with VEGF121.tion of the receptor results in early embryonic lethality

(discussed later here). Furthermore, endothelial cells iso- Migdal et al have shown that PlGF-2, a heparin-binding
isoform of PlGF [22], also binds to neuropilin-1 [140].lated from Flt-1(TK2/2) animals exhibit a normal mito-

genic response to VEGF. These results suggest that Flt-1 Regulation of vascular endothelial growth factor recep-
tors expression. The expression of Flt-1 and Flk-1/KDRplays its main role in angiogenesis as a ligand-binding

molecule, rather than as a signal-transducing receptor, at genes is largely restricted to the vascular endothelium.
The promoter region of Flt-1 has been cloned and charac-least as defined by conventional criteria. Taken together,

these studies strongly support the hypothesis that inter- terized, and a 1 kb fragment of the 59-flanking region
essential for endothelial-specific expression was identi-action with Flk-1/KDR is essential to induce the full

spectrum of VEGF biologic responses. In further support fied [141]. A 4 kb 59-flanking sequence has been identi-
fied in the promoter of KDR that confers endothelialof this conclusion, VEGF mutants, which bind selectively

to Flk-1/KDR, are fully active endothelial cell mitogens cell specific activation [142].
Similar to VEGF, hypoxia has been proposed to play[132] and anti-idiotypic antibodies that activate Flk-1/

KDR promote tumor angiogenesis [133]. Furthermore, an important role in the regulation of VEGF receptor
gene expression. Exposure to acute or chronic hypoxiaFlk-1/KDR activation has been shown to be required

for the antiapoptotic effects of VEGF for HUVE cells led to pronounced up-regulation of both Flt-1 and Flk-1/
KDR genes in the lung vasculature in a rat model [143].in serum-free conditions [39]. Such a prosurvival effect

of VEGF is mediated by the PI3 kinase/Akt pathway Also, Flk-1/KDR and Flt-1 mRNAs were substantially
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up-regulated throughout the heart following myocardial Role of VEGF and its receptors in
physiological angiogenesisinfarction in the rat [144]. However, in vitro studies have

yielded paradoxical results. Hypoxia increases VEGF Normal development: (a) Embryonic development.Gene
receptor number in cultured bovine retinal capillary en- targeting studies have demonstrated that both Flt-1 and
dothelial cells, but the expression of KDR mRNA is Flk-1/KDR are essential for development of the em-

bryonic vasculature in mice [154, 155]. However, theirnot induced but paradoxically shows an initial down-
respective roles in endothelial cell proliferation and dif-regulation [145]. Brogi et al have proposed that the hyp-
ferentiation appear to be distinct. Mouse embryos homo-oxic up-regulation of KDR observed in vivo is not direct
zygous for a targeted mutation in the Flt-1 locus died inbut requires the release of an unidentified paracrine me-
utero between day 8.5 and 9.5 [154]. Endothelial cellsdiator from ischemic tissues [146]. Recent studies have
developed in both embryonic and extra embryonic sitesprovided evidence for a differential transcriptional regu-
but failed to organize in normal vascular channels. Aslation of the Flt-1 and KDR genes by hypoxia [147].
previously noted, more recent studies revealed that nor-When HUVECs were exposed to hypoxic conditions in
mal blood vessel development and survival may occurvitro, increased levels of Flt-1 expression were observed.
in the absence of the TK domain of Flt-1 [131]. Flk-12/2

In contrast, Flk-1/KDR mRNA levels were unchanged
mice lacked vasculogenesis and also failed to develop

or slightly repressed. Promoter deletion analysis demon-
blood islands. Hematopoietic precursors were severely

strated a 430 bp region of the Flt-1 promoter to be re- disrupted, and organized blood vessels failed to develop
quired for transcriptional activation in response to hyp- throughout the embryo or the yolk sac, resulting in death
oxia. This region includes a heptamer sequence matching in utero between day 8.5 and 9.5 [155]. These findings
the HIF-17a consensus binding site in other hypoxia emphasize the regulatory role of Flk-1/KDR in early
inducible genes. Such an element was not found in the hematopoiesis [155, 156]. Also, hematopoietic stem cells,
Flk-1/KDR promoter. These findings indicate that, un- megakaryocytes, and platelets normally express this re-
like the KDR/Flk-1 gene, the Flt-1 receptor gene is di- ceptor [157].
rectly up-regulated by hypoxia via a hypoxia inducible Two independent studies [33, 34] have generated di-
enhancer element located at position 2976 to 2937 of rect evidence for the role played by VEGF in embryonic
the Flt-1 promoter [147]. vasculogenesis and angiogenesis. Inactivation of a single

More recent evidence indicates that VEGF itself may VEGF allele in mice resulted in embryonic lethality be-
up-regulate the expression of KDR in brain tissue slices tween day 11 and 12. The VEGF1/2 embryos were

growth retarded and also exhibited a number of develop-[148] and in cultured bovine capillary endothelial cells
mental anomalies. The forebrain region appeared sig-[149]. VEGF-induced KDR expression primarily oc-
nificantly underdeveloped. In the heart region, the out-curred at the transcriptional level, as assessed by a lucif-
flow region was grossly malformed; the dorsal aortaeerase reporter assay system. VEGF mutants selective
were rudimentary, and the thickness of the ventricularfor the KDR receptor induced KDR up-regulation. In
wall was markedly decreased. The yolk sac revealed acontrast, mutants with decreased KDR binding and wild-
markedly reduced number of nucleated red blood cellstype Flt-1 binding did not, suggesting that KDR receptor
within the blood islands. Significant defects in the vascu-signaling mediated the increase in KDR expression [149].
lature of other tissues and organs, including placentaBarleon et al have also shown that VEGF up-regulates
and nervous system, were observed. In situ hybridizationFlt-1 expression in cultured human endothelial cells
demonstrated the expression of VEGF mRNA in hetero-[150].
zygous embryos. Thus, the VEGF1/2 phenotype is due

Transforming growth factor-b has been reported to
to gene dosage and not to maternal imprinting. These

regulate in a negative fashion the expression of KDR findings indicate that other VEGF-like molecules are
mRNA in endothelial cells [151]. According to Patterson unable to compensate for even a partial loss of VEGF.
et al, TNF-a potently reduced mRNA transcripts of both Although several heterozygous phenotypes have been
Flt-1 and Flk-1/KDR in venous and arterial endothelial described [158], this may be the first example of embry-
cells in a dose- and time-dependent fashion [152]. These onic lethality following the loss of a single allele of a gene
authors concluded that TNF-a down-regulates expres- that is not maternally imprinted, at least in vertebrates.
sion of both VEGF receptors in human endothelial cells More recently, Carmeliet et al reported an isoform-
and that this effect is transcriptional, at least for KDR. specific knockout of the VEGF gene [159]. By Cre-loxP
However, Giraudo et al reported that TNF-a up-regu- technology, they excised exons 6 and 7 of the VEGF
lates in a dose- and time-dependent manner the expres- gene in ES cells and thus generated mice that express ex-
sion and the function of KDR as well as the expression of clusively VEGF120. Interestingly, 50% of the VEGF120/120

mice died shortly after delivery, whereas the remainderits coreceptor neuropilin-1 in human endothelium [153].
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died within two weeks. The survivors demonstrated im- underdeveloped and in some instances entirely missing.
Interestingly, these alterations appeared to be mostlypaired myocardial contractility, heart enlargement, and

defective angiogenesis leading to ischemic cardiomyopa- restricted to juxtamedullary glomeruli. There was an in-
creased mesangial matrix with granular material and pro-thy. These findings suggest that the action of the heparin-

binding isoforms of VEGF cannot be replaced by teinaceous deposits that included fibrin, but no immune
complexes were detected. The cytoplasmic foot pro-VEGF120. Although it is premature to reach any definitive

conclusions on the mechanisms underlying the inability cesses of podocytes were normal in appearance and inter-
acted with a thickened basement membrane. Interest-of VEGF120 to compensate for the lack of other VEGF

isoforms, it is noteworthy that these findings are in agree- ingly, the capillaries in the peritubular regions showed
normal fenestration in approximately half the profilesment with the earlier studies by Keyt et al, which demon-

strated the critical role of the heparin-binding domain surveyed [160]. Histological and biochemical changes
consistent with renal failure were observed. Taken to-in determining the mitogenic potency of VEGF [67].

It is interesting to observe that inactivation of the gether, these findings are consistent with a critical depen-
dence of glomerular development on VEGF [162–164].PlGF gene does not result in embryonic lethality, even

in the homozygous state [30]. PlGF2/2 mice are viable Endothelial cells isolated from the liver of mFlt (1–3)-
IgG-treated neonates demonstrated an increased apo-and fertile, although they may have some impairment

of wound healing. These findings suggest that PlGF and ptotic index, indicating that VEGF is required not only
for proliferation but also for survival of endothelial cells.perhaps some other members of the VEGF gene family

are not as critical as VEGF for vascular development However, VEGF inhibition resulted in less significant
alterations as the animal matured, and the dependenceand survival. Alternatively, it is possible be that these

molecules play so far unidentified functions. on VEGF was eventually lost some time around the
fourth postnatal week. Administration of mFlt (1–3)-Normal development: (b) Early postnatal develop-

ment. To determine the role of VEGF in postnatal de- IgG to juvenile mice failed to induce apoptosis in liver
endothelial cells [160].velopment, two independent strategies were recently

employed. Inducible, Cre-loxP–mediated gene targeting Growth plate morphogenesis and endochondral bone
formation. Endochondral bone formation is a funda-or administration of a soluble VEGF receptor chimeric

protein [mFlt (1-3)-IgG] were used to inactivate VEGF mental mechanism for longitudinal bone growth during
vertebrate development [165]. Cartilage, an avascularin early postnatal life [160]. Mice containing the “floxed”

VEGF allele were bred to a strain transgenic from Cre tissue, is replaced by bone in a process named endochon-
dral ossification. During this process, the epiphysealrecombinase controlled by an interferon-inducible pro-

moter (MX-1) [161]. Partial inhibition of VEGF ach- growth plate undergoes morphogenesis. A region of rest-
ing chondrocytes differentiates into a zone of proliferat-ieved by this inducible gene targeting system resulted in

increased mortality, stunted body growth, and impaired ing chondrocytes that then hypertrophies and finally un-
dergoes apoptotic cell death while being replaced byorgan development, most notably of the liver [160]. Ad-

ministration of mFlt (1-3)-IgG, which achieves a consid- bone. The net result is lengthening of the bone, whereas
the thickness of the growth plate remains relatively con-erably higher degree of VEGF inhibition, resulted in

nearly complete growth arrest when the treatment was stant. Such a sequence of events relies on the precise
coupling of chondrogenesis (cartilage production) withinitiated at day 1 or day 8 postnatally. Remarkably, such

treatment was also accompanied by rapid lethality. De- osteogenesis (bone formation) [165]. During this pro-
cess, blood vessel invasion from the metaphysis coincidescreased levels of proliferation of various cell types were

detected in all organs studied. Ultrastructural analysis with mineralization of the extracellular matrix (ECM),
apoptosis of hypertrophic chondrocytes, ECM degrada-documented alterations in endothelial and other cell

types. Interestingly, the liver of mFlt (1-3)-IgG–treated tion, and bone formation [165]. Although blood vessel
invasion is critical, it is unknown whether apoptosis ofneonates had fewer endothelial cells and focal loss of

integrity of the space of Disse. When the endothelial hypertrophic chondrocytes is the stimulus for recruit-
ment of blood vessels and specialized cells or, rather, ifcells were absent, hematopoietic cells could be seen in

direct contact with the hepatocyte plasma membrane. blood vessel invasion is the trigger for death of chondro-
cytes and for the subsequent steps by conveying cellularThe kidneys showed interstitial hemorrhage at the corti-

comedullary junction. Juxtamedullary and cortical glo- and/or humoral regulatory signals [166, 167].
Recently, the role of VEGF in endochondral bonemeruli were enlarged, hypocellular, and showed accumu-

lation of eosinophillic mesangial matrix. Glomerular formation has been examined [168]. These studies have
shown that the VEGF mRNA is expressed by hypertro-capillary loop numbers were reduced compared with

controls, and the proximal tubular epithelium contained phic chondrocytes in the epiphyseal growth plate [168].
To determine the functional significance of VEGF, thisprotein droplets. Ultrastructural analysis of kidneys of

treated animals showed that glomerular capillaries were factor was inactivated by systemic administration of a
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mFlt (1-3)-IgG to 24-day-old mice [168]. Following such CL angiogenesis in a rat model of hormonally induced
ovulation [177]. This effect was associated with inhibitiontreatment, blood vessel invasion was almost completely
of CL development and progesterone release. Also, fail-suppressed, concomitant with impaired trabecular bone
ure of maturation of the endometrium was observed,formation. Recruitment and/or differentiation of chon-
probably reflecting suppression of ovarian steroid pro-droclasts, which express gelatinase B/matrix metallopro-
duction plus a direct inhibition of locally producedteinase-9 [169], and resorption of terminal chondrocytes
VEGF. Areas of ischemic necrosis were demonstratedwas substantially decreased. Although proliferation, dif-
in the CL of treated animals. However, no effect onferentiation, and maturation of chondrocytes were ap-
the pre-existing ovarian vasculature was observed [177].parently normal, resorption of hypertrophic chondro-
These findings indicate that VEGF-mediated angiogen-cytes was inhibited, resulting in a paradoxical threefold
esis is essential for CL development and endocrine func-to sixfold expansion of the hypertrophic chondrocyte
tion. A similar inhibition of CL and uterine angiogenesiszone [168]. These findings indicate that VEGF-depen-
has been observed in a toxicological study in normallydent blood vessel invasion is essential for coupling carti-
cycling primates treated with a humanized anti-VEGFlage resorption with bone formation. Following VEGF
monoclonal antibody (rhumAb VEGF) [178].inactivation, hypertrophic chondrocytes fail to undergo

It is tempting to speculate that these findings will fur-apoptotic cell death [168]. Therefore, the vasculature
ther our understanding of the pathogenesis of severalcarries the essential cellular and humoral signals re-
disorders of ovarian function that profoundly impair fer-quired from correct growth plate morphogenesis. How-
tility and may also have therapeutic implications. Theever, cessation of the anti-VEGF treatment was followed
hyperplasia and hypervascularity of polycystic ovary syn-by capillary invasion, restoration of bone growth, resorp-
drome [179] could be due to increased production oftion of the hypertrophic cartilage, and normalization of
VEGF by theca-lutein cells. In this context, up-regula-the growth plate architecture. Interestingly, VEGF re-
tion of VEGF mRNA has been demonstrated in theceptor expression was localized not only to vascular en-
ovaries of patients affected by this syndrome [180].dothelial cells [168]. Osteoblasts strongly expressed Flt-1

Furthermore, inhibition of VEGF-mediated angiogen-but not Flk-1/KDR. In this context, is it is interesting to
esis and ovarian growth may have a role in the treatmentpoint out that an earlier study found VEGF to have
of ovarian hyperstimulation syndrome (OHSS), a poten-chemotactic effects on cultured bovine osteoblasts [170].
tially fatal condition characterized by massive ovarianIt is tempting to speculate that these effects are mediated
enlargement that may follow medical induction of ovula-by Flt-1. These findings indicate that VEGF-mediated
tion with gonadotropins [181]. A previous study sug-capillary invasion is a critical signal that regulates growth
gested that VEGF may be implicated in the pathogenesis

plate morphogenesis and triggers cartilage remodeling. of this syndrome by a different mechanism, acting as a
Thus, VEGF is a key coordinator of chondrocyte death, direct capillary permeability-enhancing agent [182]. In-
chondroclast function, ECM remodeling, angiogenesis, terestingly, recent studies have suggested that serum
and bone formation in the growth plate. Antiangiogenic VEGF levels in patients undergoing ovulation induction
strategies targeting VEGF in pediatric patients that have may have a prognostic factor for the development of
not completed statural growth are expected to result in OHSS [183]. Conversely, it is tempting to speculate that
reversible inhibition of growth plate vascular invasion luteal-phase defects [184] may be associated with insuf-
as an important side-effect. ficient VEGF production.

Female reproductive tract angiogenesis. The develop- Angiogenesis is also important in the pathogenesis
ment and endocrine function of the ovarian corpus lu- of endometriosis, a well-known condition resulting in
teum (CL) are dependent on the growth of new capillary infertility and pain, characterized by ectopic endome-
vessel [171]. Earlier studies suggested the release of angi- trium implants in the peritoneal cavity. High levels of
ogenic factors from the developing CL [172]. Therefore, VEGF have been measured in the peritoneal fluid of
the identification of the regulators of CL angiogenesis patients with endometriosis [185–187]. Immunohisto-
has been the object of intense investigation over the last chemistry indicated that activated peritoneal fluid mac-
several decades. Previous studies have shown the VEGF rophages, as well as tissue macrophages within the ec-
mRNA is temporally and spatially related to the prolifer- topic endometrium, are the major source of VEGF [185,
ation of blood vessels in the rat, mouse, and primate 187]. These findings raise the possibility that VEGF in-
ovary and in the rat uterus, suggesting that VEGF may hibitors may have therapeutic value for the treatment
be a mediator of the cyclical growth of blood vessels in of endometriosis.
the female reproductive tract [173–176]. Recently, the

Role of vascular endothelial growth factor inavailability of an effective inhibitor of rodent VEGF,
pathological angiogenesissuch as mFlt (1-3)IgG, has made it possible to directly

test this hypothesis [118, 177]. Treatment with mFlt Tumor angiogenesis. In 1945, Algire and Chalkley,
based on the observation that the growth of tumor xeno-(1-3)IgG resulted in virtually complete suppression of
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grafts in transparent chambers in mice is always preceded relapse-free survival rate of patients with VEGF-rich
tumors was significantly worse than that of VEGF-poor,by an increase in vascular density, concluded that “the

rapid growth of tumor explants is dependent upon the suggesting that the expression of VEGF is associated
with stimulation of angiogenesis and with early relapsedevelopment of a rich vascular supply” [188]. These au-

thors also hypothesized that the ability of tumor cells in primary breast cancer [217]. A similar correlation has
been described in gastric carcinoma patients [218]. Fur-to induce neovascular proliferation continuously may

constitute the single most important factor determining thermore, several studies have documented elevations
in the VEGF plasma levels in tumor patients comparedtheir growth advantage in vivo relative to the normal

cells from which they arose [188]. In 1968 Greenblatt with tumor-free individuals, and it has been also reported
that high VEGF levels prior to chemotherapy may beand Shubi demonstrated that tumor-associated angio-

genesis is mediated by a soluble factor(s), which is able associated with poor outcome in non-Hodgkin’s lym-
phoma as well as small-cell lung carcinomas [219–222].to diffuse across a Millipore filter [189]. In 1971, Folkman

proposed the novel concept that inhibition of angiogen- The availability of high-affinity anti-VEGF neutraliz-
ing monoclonal antibodies (mAb) [223] made it possibleesis may be a valid strategy for the treatment of solid

tumors [190] and initiated experimental work aimed to- to generate direct evidence for a role of VEGF in tumori-
genesis. In 1993, Kim et al reported that such mAbsward the isolation of a tumor angiogenesis factor(s)

[191]. Since then, extensive research has been dedicated exert a potent inhibitory effect on the growth of three
human tumor cell lines injected subcutaneously in nudeto the identification and characterization of mediators

of tumor angiogenesis [192]. Although several molecules mice: the SK-LMS-1 leiomyosarcoma, the G55 glioblas-
toma multiforme, and the A673 rhabdomyosarcomawere initially implicated, there was considerable uncer-

tainty as to their role as endogenous mediators of tumor [224]. The growth inhibition ranged between 70% and
more than 95%. These findings provided the first directgrowth and angiogenesis. For example, antibodies

against bFGF, the molecule most consistently associated demonstration of the concept that inhibition of an endog-
enous angiogenic factor may result in suppression ofwith tumor angiogenesis, did not result in inhibition of

growth of several murine tumor cell lines implanted in tumor growth. Subsequently, other tumor cell lines were
found to be inhibited in vivo by this treatment [225–229].syngeneic mice [193].

Many tumor cell lines secrete VEGF in vitro, sug- Although in most of these studies the treatment was
initiated shortly after inoculation of the tumor cells, thegesting the possibility that this diffusible molecule may

be a mediator of tumor angiogenesis [194]. In situ hybrid- anti-VEGF mAb was able to inhibit further growth of
already established tumors [230]. Anti-VEGF mAbization studies have demonstrated that the VEGF

mRNA is markedly up-regulated in the vast majority of treatment also inhibits ascites formation in a murine
model of ovarian cancer [231]. Anti-VEGF antisensehuman tumors examined thus far, including lung [195,

196], breast [197, 198], gastrointestinal tract [199–202], constructs also strongly suppress glioblastoma growth in
vivo [232].kidney [203–205], bladder [203], ovary [206–208], and

endometrial [209] carcinomas and several intracranial Other studies have suggested that VEGF also plays a
role in the development of hemorrhage associated withtumors including glioblastoma multiforme [210–212] and

sporadic, as well as VHL syndrome-associated capillary brain tumors [233]. Interestingly, overexpression of
VEGF121 or VEGF165 but not of VEGF189 resulted inhemangioblastoma [213, 214]. In glioblastoma multi-

forme and other tumors with significant necrosis, the significant intrecerebral bleeding, suggesting an impor-
tant biological difference among the VEGF isoformsexpression of VEGF mRNA is highest in hypoxic tumor

cells adjacent to necrotic areas [210–212]. Although these [233].
Intravital videomicroscopy techniques have generatedstudies have shown that tumor cells represent the major

source of VEGF, recent studies have indicated that tu- further evidence that anti-VEGF mAb treatment indeed
blocks tumor angiogenesis [234]. Noninvasive imagingmor-associated stroma is also an important site of VEGF

production [215]. These studies, using transgenic mice of the vasculature revealed a nearly complete suppres-
sion of tumor angiogenesis in anti-VEGF treated animalsexpressing green fluorescent protein under the control

of the VEGF gene promoter, have shown that the tumor as compared with controls, at all time points examined
[234]. Intravital fluorescence microscopy and video-induces activation of the VEGF gene promoter in non-

transformed stromal cells, such as fibroblasts [215]. These imaging analysis have been also applied to address the
important issue of the effects of VEGF on permeabilityfindings suggest that tumor and stromal cells constitute

a highly integrated system that facilitate tumor angiogen- and other properties of tumor vessels [235]. Treatment
with anti-VEGF mAb was initiated when tumor xeno-esis by releasing VEGF.

A correlation has been noted between VEGF expres- grafts were already established and vascularized and re-
sulted in time-dependent reductions in vascular perme-sion and microvessel density in primary breast cancer

sections [216]. Postoperative survey indicated that the ability [235]. These effects were accompanied by marked
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changes in the morphology of vessels, with reduction in all be associated with intraocular neovascularization [5].
The new blood vessels may lead to vitreous hemorrhage,diameter and tortuosity. A regression of blood vessels

was observed after repeated administrations of anti- retinal detachment, neovascular glaucoma, and eventual
blindness [5]. Diabetic retinopathy is the leading causeVEGF mAb. Magnetic resonance imaging (MRI) tech-

niques have also documented inhibition of tumor vascu- of blindness in the working population [245]. All of these
conditions are known to be associated with retinal ische-lar permeability following administration of anti-VEGF

mAb [236]. mia [246]. In 1948, Michaelson proposed that a key event
in the pathogenesis of these conditions is the release byFurther evidence that VEGF action is necessary for

effective tumor angiogenesis has been provided in an in the ischemic retina into the vitreous diffusible angiogenic
factor(s) (“factor X”) responsible for retinal and irisvivo model of ES cell tumorigenesis [33]. ES cells are

able to give rise to highly vascularized teratocarcinomas neovascularization [247]. Elevations of VEGF levels in
the aqueous and vitreous of eyes with proliferative reti-when injected in nude or syngeneic mice [237]. VEGF

null ES cells were dramatically impaired in their ability nopathy have been described [248–250]. In a large series,
a strong correlation was found between levels of immu-to form tumors in nude mice [33]. Furthermore, transfec-

tion with oncogenic ras failed to restore an in vivo tumor- noreactive VEGF in the aqueous and vitreous humors
and active proliferative retinopathy associated with dia-igenic phenotype in VEGF2/2 ES cells [238]. These find-

ings strengthen the hypothesis that VEGF-mediated betes, occlusion of central retinal vein, or prematurity
[248]. Furthermore, Okamoto et al recently developedangiogenesis is crucial for effective in vivo growth.

An independent verification of the hypothesis that the a transgenic mouse model in which the bovine rhodopsin
promoter is coupled to the gene for human VEGF [251].VEGF action is required for tumor angiogenesis has

been provided by the finding that retrovirus-mediated This study demonstrates that over-expression of VEGF
in the retina is sufficient to cause intraretinal and subreti-expression of a dominant negative Flk-1 mutant, which

inhibits signal transduction through wild-type Flk-1 re- nal neovascularization.
More direct evidence for a role of VEGF as a mediatorceptor, suppresses the growth of glioblastoma multi-

forme as well as other tumor cell lines in vivo [239, 240]. of intraocular neovascularization has been generated in a
primate model of iris neovascularization and in a murineFurthermore, two recent studies have demonstrated that

high local expression of sFlt-1, achieved by adenoviral- model of retinopathy of prematurity [252, 253]. In the
former, intraocular administration of anti-VEGF anti-mediated gene transfer or by stable transfection of tumor

cells, is able to significantly inhibit tumor growth, metas- bodies dramatically inhibits the neovascularization that
follows occlusion of central retinal veins [254]. Likewise,tasis, and mortality rate [241, 242].

A humanized version of a high-affinity anti-VEGF soluble Flt-1 or Flk-1 fused to an IgG suppresses retinal
angiogenesis in the mouse model [255].mAb has been generated by site-directed mutagenesis

of a human framework [243]. This humanized mAb Neovascularization is a major cause of visual loss also
in AMD, the overall leading cause of blindness [5]. Sev-(rhumAb VEGF) has the same binding characteristics

and ability to neutralize VEGF as the original murine eral studies have demonstrated the immunohistochemi-
cal localization of VEGF in surgically resected choroidalmAb. Toxicological studies in primates have shown that

rhmAb VEGF is safe even after prolonged treatment, neovascular membranes from AMD patients [256, 257].
These findings suggests a role for VEGF in the progres-and its effects are limited to inhibition of angiogenesis

in the female reproductive tract and induction of growth sion of AMD-related choroidal neovascularization, rais-
ing the possibility that a pharmacological treatment withplate dysplasia in animals that have not completed sta-

tural growth [178]. rhumAb VEGF is currently undergo- VEGF inhibitors may constitute a therapy for this condi-
tion. Currently, anti-VEGF strategies are being exploreding phase II clinical trials as a treatment for various solid

tumors, either as a single agent or in combination with in clinical trials, using either a recombinant humanized
anti-VEGF Fab [243] or 29-fluoropyrimidine RNA oligo-conventional chemotherapy. The results of a phase I

study in cancer patients have been recently reported and nucleotide ligand (aptamers) [258].
Two independent studies have suggested that VEGFhave shown that rhumAb VEGF is safe and also suggest

some activity of the antibody a single agent (abstract; is involved in the pathogenesis of RA, an inflammatory
disease where angiogenesis plays a significant role [259,Gordon et al, 34th Annual Meeting of the American Soci-

ety of Clinical Oncology, May 16–19, 1998). Small mole- 260]. Levels of immunoreactive VEGF were found to
be high in the synovial fluid of RA patients, whereascules that inhibit Flk-1/KDR signal transduction are also

undergoing clinical trials in cancer patients [244]. they were very low or undetectable in the synovial fluid
of patients affected by other forms of arthritis or by

Other pathological conditions degenerative joint disease [261, 262].
Several studies have suggested that VEGF is impli-Diabetes mellitus, occlusion of central retinal vein, or

prematurity with subsequent exposure to oxygen can cated in the development of brain edema. VEGF is a
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potent mediator of vascular permeability to water [46, in a pig model of chronic myocardial ischemia created
by ameroid occlusion of the left proximal circumflex47]. Diffuse VEGF mRNA expression has been observed

in adult rat brain but at relatively low abundance [261]. artery [274]. Also, MRIs provided a noninvasive assess-
ment of the benefits secondary to VEGF administrationHowever, as previously noted, hypoxia is a major trigger

for VEGF expression, and enhanced levels of VEGF in the porcine model [275]. Adenoviral-mediated gene
transfer of VEGF121 has been also shown to result intogether with its receptors, Flt-1 and Flk-1/KDR, have

been reported by several groups in the rat brain following collateral vessel growth and functional improvement in
a porcine model [276].the induction of focal cerebral ischemia [262–264]. Re-

cently, van Bruggen et al tested the hypothesis that The hypothesis that VEGF may result in therapeuti-
cally significant angiogenesis in humans was initiallyVEGF antagonism, achieved by systemic administration

of mFlt (1-3)-IgG [118, 177], may have beneficial effects tested by Isner et al in a gene therapy trial in patients
with severe limb ischemia [277]. Arterial gene transferin a murine model of cortical ischemia [265]. Using high-

resolution MRI techniques to quantitate the extent of of naked plasmid DNA encoding VEGF165, applied to
the hydrogel polymer coating of an angioplasty balloon,the edematous changes, a significant reduction in the

volume of the edematous tissue was observed one day resulted in angiographic and histological evidence of an-
giogenesis in the knee, midtibial, and ankle levels fourfollowing the onset of ischemia [265]. Furthermore, mea-

surements of the resultant infarct size measured several weeks after the transfer. In a subsequent trial, the
VEGF165 cDNA was injected intramuscularly [278].weeks later revealed a significant sparing of cortical tis-

sue in the mFlt (1-3)-IgG–treated group. These results Gene transfer was performed in 10 limbs of nine patients
with nonhealing ischemic ulcers and/or rest pain causeddemonstrate that antagonism of VEGF reduces ische-

mic-reperfusion related brain edema and injury, impli- by peripheral arterial disease. The ankle-brachial index
improved. Newly visible collateral blood vessels werecating VEGF in the pathogenesis of cerebral ischemia.
directly documented by contrast angiography in seven
limbs, and magnetic resonance angiography showed

THERAPEUTIC APPLICATIONS OF VASCULAR
qualitative evidence of improved distal flow in eight

ENDOTHELIAL GROWTH FACTOR
limbs. Additional trials performed by the same group of

Intra-arterial or intramuscular administration of investigators have indicated that local injection of naked
rhVEGF165 may significantly augment perfusion and de- plasmid DNA coding for VEGF165 results in an improve-
velopment of collateral vessels in a rabbit model, where ment in patients affected by myocardial ischemia [279]
chronic hindlimb ischemia was created by surgical re- or Burger’s disease (thromboangiitis obliterans) [280].
moval of the femoral artery [266]. These studies provided Clinical trials using the recombinant VEGF165 are also
angiographic evidence of neovascularization in the ische- ongoing. A phase I study in patients with coronary ische-
mic limbs. Arterial gene transfer with cDNA encoding mia where recombinant human rhVEGF165 was adminis-
VEGF also led to revascularization in the same rabbit tered by intracoronary infusion has been reported [281].
model to an extent comparable to that achieved with The molecule was safely tolerated at all doses tested.
the recombinant protein [267, 268]. In addition, several There was overall improvement in nuclear perfusion in
studies have suggested that the angiogenesis initiated by 7 out of 15 subjects and improved collateralization in 5
the administration of VEGF improves blood flow and out of 7 who underwent follow-up coronary angiography.
muscle function in ischemic limbs [269, 270]. Other stud- Phase II studies with rhVEGF165 for the same indication
ies have shown that VEGF administration also leads to are in progress. However, a relatively large (174 patients)
a recovery of normal endothelial reactivity in dysfunc- placebo-controlled phase II study in which rhVEGF165

tional endothelium [271]. Furthermore, Mack et al have was delivered as a single intracoronary infusion, followed
also shown that an adenovirus vector expressing VEGF165 by three intravenous injections, has not demonstrated
cDNA is capable of stimulating an angiogenic response any clinical benefit. The treatment was not superior to
that protects against acute vascular occlusion in the set- the placebo in treadmill time and pain relief, at least at
ting of preexisting ischemia in a rat model of hind limb a 60-day view [282]. It is possible that a key difference
ischemia, suggesting that VEGF therapy might be useful between animal models and human patients lies in the
in the prophylaxis of advancing arterial occlusive disease fact that young and otherwise healthy animals are able
[272]. to mount an effective endogenous angiogenic response

Banai et al have shown that VEGF administration that can be maximized by an additional stimulus pro-
results in increased coronary blood flow in a dog model vided by a recombinant protein or gene therapy. In con-
of coronary insufficiency [273]. In addition, Harada et trast, patients with extensive atherosclerotic disease may
al have demonstrated that extraluminal administration have a less robust response to endogenous and exoge-
of as little as 2 mg of rhVEGF by an osmotic pump nous factors. Thus, very brief exposures to VEGF such

as that achieved in such a trial may be insufficient. It isresults in a significant increase in coronary blood flow
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possible, however, that a more persistent exposure to an is a molecule of major significance for kidney homeosta-
sis, especially during development. It is tempting to spec-individual growth factor or to a combination of growth

factors may be effective. Clinical trials currently ongoing ulate that further study of the role of VEGF not only
will enhance our understanding of the mechanisms ofshould answer at least in part these questions over the

next two to three years. endothelial repair following renal ischemia, but may also
offer new therapeutic avenues for this condition.
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APPENDIX
ptosis of endothelial cells and regression of blood vessels.

Abbreviations used in this article are: ACTH, adrenocorticotropicSuch a role, initially suggested by the expression of
hormone; AMD, age-related macular degeneration; Ang-1, angiopoie-
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