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ABSTRACT

The growth of human tumors and development of
metastases depend on the de novo formation of blood ves-
sels. The formation of new blood vessels is tightly regu-
lated by specific growth factors that target receptor
tyrosine kinases (RTKs). Vascular endothelial growth
factor (VEGF) and the Flk-1/KDR RTK have been impli-
cated as the key endothelial cell-specific factor signaling
pathway required for pathological angiogenesis, includ-
ing tumor neovascularization. Inhibition of the VEGF

tyrosine kinase signaling pathway blocks new blood ves-
sel formation in growing tumors, leading to stasis or
regression of tumor growth. Advances in understanding
the biology of angiogenesis have led to the development of
several therapeutic modalities for the inhibition of the
VEGF tyrosine kinase signaling pathway. A number of
these modalities are under investigation in clinical studies
to evaluate their potential to treat human cancers. 
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INTRODUCTION

Angiogenesis, the process by which capillaries sprout
from preexisting blood vessels, is tightly regulated by a
large number of proangiogenic and antiangiogenic factors.
Tumor cells have an absolute requirement for a persistent
supply of new blood vessels to nourish their growth and to
facilitate metastasis. Thus, tumor vascularization is a vital
process for the progression of a neoplasm from a small
localized tumor to an enlarging tumor with the ability to
metastasize [1, 2]. The angiogenic cascade leading to tumor
vascularization can be divided into two general phases, the
prevascular phase (referred to as the “angiogenic switch”)
and the vascular phase [3, 4]. Once tumor cells undergo the
transformation to an angiogenic phenotype, these malignant
cells are capable of inducing phenotypic changes in
endothelial cells as well as in other cell types [5, 6]. At that
point, avascular tumors can acquire their own blood supply,
which permits a rapid rate of growth. While tumors lacking
adequate vasculature become necrotic [7] or apoptotic [8],
tumors that have undergone neovascularization may not
only enter a phase of rapid growth but may also have
increased metastatic potential.

ANGIOGENIC FACTORS

A large number of proangiogenic factors and their cog-
nate receptors have been identified, including basic fibroblast

growth factor [9], platelet-derived growth factor (PDGF)
[10], platelet-derived endothelial cell growth factor [11],
fibroblast growth factor [12], angiopoietin-1 [13], transform-
ing growth factor beta-1 (TGF-β1) [14], transforming growth
factor alpha (TGF-α), and epidermal growth factor (EGF)
[15]. Perhaps the best characterized of the proangiogenic 
factors is vascular endothelial growth factor ([VEGF] also
known as vascular permeability factor), which is relatively
unique among growth factors in terms of its specificity for the
vascular endothelium [16-18]. The VEGF family currently
includes six known members: VEGF, placenta growth factor,
VEGF-B, VEGF-C, VEGF-D, and VEGF-E [19-21]. These
are secreted as dimeric glycoproteins, all of which contain the
characteristic regularly spaced eight-cysteine residues
referred to as the “cysteine knot” motif [20, 22, 23]. These
glycoproteins belong to a structural superfamily of growth
factors that also includes PDGF-BB and TGF-β2 [24].

VEGF, the most potent direct-acting angiogenic protein
known [25, 26], is a diffusible endothelial cell-specific mito-
gen and angiogenic factor that also increases vascular per-
meability. It elicits a pronounced angiogenic response in a
variety of in vivo models [27-31]. Endothelial cell survival
in newly formed vessels is VEGF-dependent [32]. VEGF
overproduction has been identified as a major factor under-
lying pathological angiogenesis in vivo in conditions such as
psoriasis, macular degeneration, and tumor proliferation

 by guest on M
ay 7, 2014

http://theoncologist.alpham
edpress.org/

D
ow

nloaded from
 

http://theoncologist.alphamedpress.org/


[33]. Malignant transformation of cultured cells often results
in an induction of VEGF expression. For example, Kieser et
al. [34] reported that mutant murine p53tumor-suppressor
gene induced expression of VEGF mRNA in transient trans-
fection assays. Oncogenic forms of the tumor-suppressor
genes, Ras and Raf, have also been shown to upregulate
VEGF expression [35]. Recently, constitutive expression of
mRNA and proteins for VEGF and its cognate receptors was
observed in most primary and metastatic melanoma cell
lines and in SV40T-transformed melanocytes [36]. Neonatal
melanocytes did not express VEGF or VEGF receptors, and
VEGF expression could not be induced by exogenous
growth factors [36].

ROLE OF VEGF IN ANGIOGENESIS

Hypoxia appears to be an important stimulus for VEGF
production in both malignant and normal cells [37, 38]. The
induction of VEGF gene expression by hypoxia in tumor cells
involves both an increase in the rate of gene transcription,
mediated by the transcription factor hypoxia-inducible factor-
1 [39], and an enhancement of the stability of VEGF mRNA
[40]. This mechanism is discussed in more detail in a subse-
quent chapter on the role of VEGF in von Hippel-Lindau
Syndrome by Adrian Harris. In addition to its effect in
tumors, hypoxia-induced VEGF is capable of stimulating
angiogenesis in a number of other sites, including endothelial
cells [41], retinal pericytes [42], and the myocardium [43-46].

Transcription of VEGF mRNA is also induced by a vari-
ety of growth factors and cytokines, including PDGF, EGF,
tumor necrosis factor alpha, TGF-β1, and interleukin 1-beta
[19, 25]. In addition to its role in the paracrine stimulation of
angiogenesis, VEGF may also have an autocrine stimulatory
effect on tumor cells [47]. These autocrine and paracrine
effects are summarized in Figure 1. The initial event of
hypoxia-mediated transcription and factor secretion by the

growing tumor and the stromal tissue leads to an upregulation
and activation of growth factor receptors. This results in
endothelial sprouting, increased vascular permeability, the
expression of tissue matrix metalloproteinases (MMPs), and
eventually the digestion of matrix, which is required for the
endothelial cell to move. The increased endothelial cell mito-
genesis and spread and activation of other factors lead to the
formation and movement of endothelial cells, including other
supporting cells like pericytes, and eventually lead to vessel
extension, increased capillary integrity, differentiation of
microvessel support cells, and formation of the vascular net-
work. VEGF plays a role in the earliest events in this process.
Recent evidence suggests that VEGF may not only play a role
in inducing angiogenesis but also is important in promoting
the survival of new vessels formed in tumors. Benjamin et al.
[48] demonstrated that downregulating VEGF transgene
expression using a tetracycline-regulated expression system
results in the selective obliteration of immature blood vessels
that have not yet recruited periendothelial cells in a human
glioma xenograft model. Similar results were observed when
the constitutive production of VEGF by the glandular epithe-
lium was suppressed as a consequence of androgen-ablation
therapy in human prostate cancer. These results underscore
the pivotal role of VEGF in the stimulation and maintenance
of newly formed vessels in tumors.

VEGF AND FLK -1/KDR SIGNALING PATHWAY

Three high-affinity cognate endothelial receptors for
VEGF have been identified: VEGFR-1/Flt-1, VEGFR-
2/Flk-1/KDR, and VEGFR-3/Flt-4. These receptors func-
tion as signaling molecules during vascular development
[49]. VEGFR-1 and VEGFR-2 are cell surface receptor
tyrosine kinases (RTKs), which are localized on endothelial
cells during embryogenic development. The coordinated
patterns of expression of the genes for VEGF and its recep-

tors suggest that these proteins
participate in vascular develop-
ment during embryogenesis [50,
51]. As shown in Figure 2, VEGF
RTKs are single-pass transmem-
brane receptors that possess intrin-
sic cytoplasmic enzymatic activity,
catalyzing the transfer of the
gamma-phosphate of ATP to tyro-
sine residues in protein substrates
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Figure 1. Paracrine and autocrine
stimulation by angiogenic growth
factors.VEGF = vascular endothelial
growth factor; FGF = fibroblast growth
factor; PDGF = platelet-derived growth
factor. 
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[52]. VEGF RTKs, members of a large family of RTKs, are
essential components of signal transduction pathways that
affect cell proliferation, differentiation, migration, and
metabolism. Activation of VEGF RTKs occurs through lig-
and binding, which facilitates receptor dimerization and
autophosphorylation of tyrosine residues in the cytoplasmic
portion. The phosphotyrosine residues either enhance recep-
tor catalytic activity or provide docking sites for downstream
signaling proteins [52, 53].

VEGFR-2 is exclusively expressed in endothelial cells
and appears to play a pivotal role in endothelial cell differen-
tiation and vasculogenesis [54, 55]. Many studies using mol-
ecular techniques have provided evidence for the role of
VEGFR-2 in tumor vascularization, growth, and metastasis.
For example, the manipulation of the cloned receptor to cre-
ate a “dominant negative” mutation is one experimental tech-
nique that helps establish the relevance of Flk-1 to tumor

angiogenesis. Millauer et al. [56] used a retrovirus encoding
a dominant-negative mutant of the VEGF-2 receptor to pre-
vent the growth of a transplanted glioblastoma tumor, demon-
strating the biological relevance of the VEGF-2/Flk-1/KDR
receptor/ligand system for tumor-associated angiogenesis in
vivo. Recently, Bernatchez[57] used antisense oligomers
directed against Flk-1 and Flt-1 to show that VEGF stimula-
tion of endothelial cell proliferation, migration, and platelet-
activating factor synthesis is Flk-1 dependent, whereas
inhibition of Flt-1 expression failed to affect VEGF ability to
modulate these activities. These studies have validated target-
ing of the VEGFR-2 signaling pathway for the development
of antiangiogenic agents. 

THERAPEUTIC STRATEGIES FOR INHBITING

VEGF PATHWAY

VEGF and its receptors have been implicated in the
angiogenesis that occurs in many solid tumors including
breast cancer [58], colon cancer [59], hepatoma [60], bladder
cancer [61], gastric cancer [62], and prostate cancer [63].
Since formation of solid tumors is angiogenesis dependent,
several strategies have been developed for targeting the
VEGF pathway as part of anticancer therapy (Table 1) [59,
64-75]. Potential approaches for blocking VEGF action
include inhibiting secretion of endogenous tumor VEGF, neu-
tralizing VEGF in the microcirculation, and preventing VEGF
binding and subsequent signal transduction. A number of
these strategies for inhibiting tumor angiogenesis by selec-
tively targeting the VEGF signaling pathway are currently
being tested in early phase I/II clinical trials.

Oligonucleotides
Secretion of VEGF can be inhibited by antisense oligonu-

cleotides or expression constructs specific for VEGF, which
have been successfully used in models of thyroid carcinoma
[76], glioma [77], and melanoma [78]. Ribozymes are RNA
molecules that possess the dual properties of RNA sequence-
specific recognition and site-specific cleavage of other RNA
molecules. Ribozymes that target the VEGF receptor mRNAs
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Figure 2. Representative structure of vascular endothelial growth
factor (VEGF) tyrosine kinase receptors.The VEGF receptor family
is represented by seven immunoglobulin-like loops in the extracellu-
lar domain, which binds VEGF. Two VEGF receptors form a dimer
to activate autophosphorylation of tyrosine residues on the cytoplas-
mic domain. Ig = immunoglobulin; VEGF = vascular endothelial
growth factor; Y- jP = phosphorylated tyrosine residues.

Agent Target Reference

Angiozyme™ (Ribozyme Pharmaceuticals; Boulder, CO) VEGFR [64]

rhumAb-anti-VEGF Antibody (Genentech; South San Francisco, CA) VEGF [65-67]

Soluble Flt-1 (Genentech) VEGF [68]

Anti-Flk Antibody (Imclone; Somerville, NJ) VEGFR-2 [69]

SU5416 (SUGEN; South San Francisco, CA) VEGFR [59, 70, 71]

ZD4190 (AstraZeneca; Macclesfield, UK) VEGFR [72-74]

PTK787/ZK222584/CGP 41251 (Novartis AG; Basel, Switzerland) VEGFR [75]

Table 1. Therapeutic agents that have been developed to specifically target the VEGF pathway
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were developed, and their biological activities in cell culture
and in an animal model were assessed [64]. Ribozymes tar-
geting Flt-1 or KDR mRNA sites reduced VEGF-induced
proliferation of cultured human vascular endothelial cells and
specifically lowered the level of Flt-1 or KDR mRNA present
in the cells. Anti-Flt-1 and KDR ribozymes also exhibited
antiangiogenic activity in a rat corneal pocket assay of VEGF-
induced angiogenesis [64].

Anti-VEGF Monoclonal Antibodies
Several anti-VEGF monoclonal antibodies have been

developed and have demonstrated efficacy in a wide variety
of human tumors in xenograft models [25, 65-67, 79-81].
Initial studies by Kim et al.[65] demonstrated treatment
with a murine monoclonal antibody specific for VEGF
(mumAb VEGF A.4.6.1) potently suppressed angiogenesis
and growth in a variety of human tumor cell lines trans-
planted in nude mice. Subsequently, a recombinant human-
ized mAb VEGF version of this antibody, rhumAb VEGF,
was developed for clinical evaluation in the treatment of
solid tumors and other disorders [82]. A phase I clinical
trial of rhumAb VEGF in 25 cancer patients showed that
multiple doses of anti-VEGF were safe and well tolerated
[83]. In a phase II trial of rhumAb VEGF in 15 patients with
hormone refractory prostate cancer, administration of 10 mg/kg
of rhumAb VEGF intravenously every two weeks resulted
in three possible mixed responses [84].

Similarly, Prewett et al.[69] demonstrated that treat-
ment with an anti-Flk-1 mAb significantly suppressed the
growth of primary murine Lewis lung, 4T1 mammary, and
B16 melanoma tumors and the growth of Lewis lung metas-
tases. This antibody also completely inhibited the growth of
established epidermoid, glioblastoma, pancreatic, and renal
human tumor xenografts. Histological examination of anti-
Flk-1 mAb-treated tumors showed evidence of decreased
microvessel density, tumor cell apoptosis, decreased tumor
cell proliferation, and extensive tumor necrosis. These find-
ings support the conclusion that anti-Flk-1 mAb treatment
inhibits tumor growth by suppressing tumor-induced neo-
vascularization and demonstrate the potential for therapeu-
tic application of anti-VEGF receptor antibody in the
treatment of angiogenesis-dependent tumors [69]. Based on
these results, the anti-Flk-1 antibody has been introduced
into the clinic.

Soluble VEGF Receptor
An alternative approach would be to use a soluble

recombinant Flt-1 receptor to inhibit the VEGF signaling
pathway. Using this approach, a soluble full-length recom-
binant Flt-1 could be used to bind to circulating VEGF
[68]. Another approach would be to produce tumor cells

transfected with cDNA encoding the native soluble Flt-1
(sFlt-1) truncated VEGF receptor, which can function by
sequestering VEGF or by forming inactive heterodimers
with membrane-spanning VEGF receptors in a dominant
negative fashion [85]. Both of these techniques have
demonstrated preclinical efficacy. Although VEGF has
been successfully neutralized using these strategies in pre-
clinical models, their potential application may be limited
by the significant amount of protein that would be needed
to treat humans. Therefore, preventing RTK signal trans-
duction may be a more appropriate means of tumor control
in humans.

Small Molecule Inhibitors
The 3-substituted indolinone compound, SU5416, is a spe-

cific and potent catalytic inhibitor of VEGFR protein kinases
[86] (Fig. 3). It inactivates Flk-1/KDR by binding in the ade-
nine-binding pocket (Fig. 4). It is a specific VEGFR inhibitor
that has virtually no inhibitory activity against serine threonine
protein kinases and tyrosine kinases, such as Src, FGF receptor,
Met, and Abl and has little activity against PDGF receptor [70].
At present, SU5416 is the most clinically advanced VEGF
RTK-selective tyrosine kinase inhibitor being developed for
antiangiogenic treatment of cancer [87]. As would be expected
by its mechanism of action, SU5416 inhibits tumor growth in
vivo in a dose-dependent manner, whereas it has no effect on
tumor cells in vitro [70]. SU5416 has shown activity in a large
number of tumor xenografts in nude mice including melanoma,
glioma, fibrosarcoma, and lung, epidermoid, mammary, and
prostate carcinomas [70] as well as in neurogenic sarcoma
xenografts [71]. Recently, Shaheen et al.[59] evaluated the
effect of SU5416 on tumor angiogenesis and metastasis in a
human colon cancer xenograft model. In this study, SU5416
inhibited tumor metastases, microvessel formation, and cell
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Figure 3. Structural formula of SU5416.The chemical name 
of the agent is 3-[(2,4-dimethylpyrrol-5-yl) methylidene]-indo-
line-2-one.
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proliferation [59]. These findings indicate that targeting the
VEGF receptor/ligand system with SU5416 decreases
tumor vascularity and vessel density and increases tumor
cell apoptosis and is a rational approach to inhibiting tumor
growth. In a phase I clinical trial with SU5416 after enroll-
ment of 69 patients, the drug was well tolerated at dose lev-
els of 4.4-145 mg/m2/day, and stable disease was seen in
patients with Kaposi’s sarcoma and in patients with non-
small cell lung, colorectal, and basal cell cancers [88, 89].

Another substituted indolin-2-one inhibitor of RTKs,
SU6668, inhibits the signaling of the VEGF receptor (Flk-
1/KDR) and also targets the PDGF and fibroblast growth
factor receptors [86, 90, 91]. This novel drug is believed to
inhibit tumor growth by preventing angiogenesis and by its
direct effects on the tumor cells and the surrounding stro-
mal cells, which support tumor cell growth. SU6668 has
recently entered phase I human trials for the treatment of
solid tumors.

Several other VEGF RTK inhibitors have shown preclin-
ical efficacy. AstraZeneca Pharmaceuticals (Macclesfield,
UK) have identified a series of substituted 4-anilinoquinazo-
lines that are potent inhibitors of VEGFR-1 and VEGFR-2.
Of these, ZD4190 is an orally active inhibitor of Flt-1 and Flk-
1/KDR that prevented VEGF-mediated proliferation of
endothelial cells in vitro [72]. Following chronic oral admin-
istration, this compound significantly inhibited the growth of
various human tumor xenografts in vivo including breast,
colon, lung, ovarian, and prostate carcinomas [73]. ZD4190
has also been shown to reduce significantly vascular
endothelial permeability in experimental models [74]. Two

additional oral inhibitors of VEGF
RTK activity, ZK222584 and CGP
41251, are under development 
by Novartis Pharma (Basel,

Switzerland). Originally identified as an inhibitor of protein
kinase C, CGP 41251 has been shown to inhibit the ligand-
induced autophosphorylation of VEGF-R2/Flk-1/KDR with-
out affecting the activity of other RTKs such as VEGF-1/Flt-1
and FGF [92]. CGP 41251 has been shown to have a broad
antiproliferative effect in vitro and inhibits the angiogenic
response to VEGF in vivo [92]. Similarly, ZK222584 has
been shown to inhibit angiogenesis and growth of human
ovarian carcinomas in vivo in a dose-dependent manner [75].
In mice, this compound was associated with increased sur-
vival time, decreased tumor weight, and decreased ascites
volume when administered orally [75].

CONCLUSION

The future of RTK inhibitors as therapeutic agents will
be clearer over the next several years as results of the cur-
rent clinical trials become available and as the factors reg-
ulating angiogenesis and the interactions between these
factors are more fully elucidated. Drug resistance is a major
problem with chemotherapy agents because many tumors
are genetically unstable. Since cytotoxic and antiangio-
genic therapies are aimed at different cellular targets, clin-
ical strategies to combine antiangiogenic agents with
cytotoxic therapy are being devised. It is hoped that com-
bining these agents will be more effective in controlling
tumor growth; cytotoxic agents will reduce the tumor bur-
den of already vascularized tumors, while antiangiogenic
agents will prevent neovascularization and growth of small
and occult metastatic foci as well as the formation of new
metastatic lesions.
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Figure 4. Binding site of SU5416 
in the adenine-binding pocket of
VEGFR. SU5416 is shown modeled in
the adenosine triphosphate binding
site of the Flk-1/KDR intracellular
catalytic core. (Two views are shown.)
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